HOME >  >

메뉴

  • 학회지
  • 학회보
    • 개요
    • 투고게시판
  • 공동발간지
  • 논문 검색
  • 도서/자료 신청
    • 도서신청
    • Proceeding 신청
    • 회지/회보 신청
    • 자료복사 신청
  • 광고안내/신청
    • 광고안내
    • 광고 신청

  • Page : 85 - 89 DOWNLOAD
  • Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly
    practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.
  • KEYWORDs : marine corrosion, hybrid-biocomposite, superhydrophobic, oil and gas industry
  • AUTHORs : M. J. Suriani† and W. B. Wan Nik
  • Page : 76 - 84 DOWNLOAD
  • An Overview of Seabed Storage Methods for Pipelines and Other Oil and Gas Equipment
  • In the construction of subsea oil and gas developments, it is increasingly common that subsea oil and gas equipment will be installed in subsea well before final hookup and production. Installation of wellheads, subsea hardware, pipelines, and surface facilities (platforms, FPSO, FLNG, connected terminals, or gas plants) are increasingly driven by independent cost and vessel availability schedules; this gives rise to requirements that the subsea facilities must be stored in the seabed for a specific time. In addition, schedule delays, particularly in the installation or startup of the connected platform, FPSO, FLNG, or onshore plant may cause unexpected extensions of the intended storage period. Currently, there are two methods commonly used for storage subsea facilities in the seabed: dry parking and
    wet parking. Each method has its own risks, challenges, and implications for the facility life and its integrity. The corrosion management and preservation method selection is a crucial factor to be considered in choosing the appropriate storage method and achieving a successful seabed storage. An overview of those factors is presented, along with a discussion on the internal corrosion threats and assessments.
  • KEYWORDs : seabed storage, dry parking, wet parking, corrosion, microbial, chemical treatment
  • AUTHORs : M. C. Fatah†, A. Mills, A. Darwin, and C. Selman
  • Page : 69 - 75 DOWNLOAD
  • Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel
    decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.
  • KEYWORDs : concrete reinforcement, galvanized steel, bond strength, porosity
  • AUTHORs : M. Kouril†, P. Pokorny, and J. Stoulil
  • Page : 64 - 68 DOWNLOAD
  • Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions
  • The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.
  • KEYWORDs : pitting corrosion, loading, cellular automata, finite element method
  • AUTHORs : Haitao Wang† and En-Hou Han
  • Page : 59 - 63 DOWNLOAD
  • Corrosion in Oil well Stimulation Processes Caused by Different Chelating Agents Based on EDTA Compounds
  • Chelating solutions can be damaged by strong acids during oil production. To design effective corrosion inhibitors and other alternatives for corrosion control, it is important to understand not only the behavior of the system under operating condition but also the kinetics of electrochemical reactions during the corrosion process. In this study, the electrochemical behaviors of P-110 steel in aqueous fluids based on ethylenediaminetetraacetic acid (EDTA) compounds under various temperatures and hydrodynamic regime conditions were assessed. Electrochemical measurements were conducted using rotating disc electrodes manufactured. Electrolytes were prepared using aqueous compounds of EDTA like diammonium salt, disodium salt, and tetrasodium salt. Potentiodynamic polarization, electrochemical impedance, and mass loss tests were performed in order to assess the corrosion kinetic in electrolytes. Hydrodynamic effects were observed only
    in the cathodic polarization curve. This proves that hydrodynamic regime plays an important role in the corrosion of steel mainly in disodium and diammonium EDTA solutions. Two cathodic reactions controlled the corrosion process. However, oxygen level and pH of the electrolyte played the most important role in metal corrosion. Corrosion rates in those fluids were decreased drastically when oxygen concentration was reduced.
  • KEYWORDs : EDTA, chelating agents, electrochemical techniques, steel, corrosion, oil production
  • AUTHORs : J. A. Calderón†, F. A. Vásquez, L. Arbeláez, and J. A. Carreño
  • Page : 49 - 58 DOWNLOAD
  • The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding
  • Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the
    interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.
  • KEYWORDs : super austenitic stainless steel, autogenous GTAW, seal-weld, shielding nitrogen gas, pitting corrosion, critical pitting temperature
  • AUTHORs : Ki Tae Kim, Hyun Young Chang, and Young Sik Kim†